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Abstract— This paper introduces a sparse scene reconstruc-
tion algorithm for automobile frequency-modulated continuous-
wave synthetic aperture radar (FMCW SAR) through scaled
compressed sensing (CS). An FMCW radar leads to low manu-
facturing cost, compact realization, and low transmission power.
An automobile SAR is more economical and easier to implement
than typical SAR platforms (e.g., satellites and aircraft). We apply
CS to randomly subsampled raw data of automobile FMCW
SAR for sparse reconstruction. We exploit the fact that the
velocity of an automobile is significantly lower than that of the
SAR platforms, which leads to a vastly narrow bandwidth of
an azimuth-matched filter in the azimuth compression of the
range-Doppler algorithm (RDA). Low-frequency azimuth data
have a fundamental effect on azimuth compression. We propose
a new reconstruction scheme, scaled CS, which specializes in
low-frequency information recovery for automobile SAR. The
scheme is based on basis pursuit denoising (BPDN). A Ku-band
FMCW SAR system is developed to verify the performance of
the proposed algorithm. We mount our system on an automobile
and collect FMCW SAR raw data in the stripmap mode with
a van maintained a constant speed on a highway. The proposed
reconstruction algorithm shows improved recovery performance
for automobile FMCW SAR, which is validated by processing a
high-resolution real SAR image.

Index Terms— Automobile synthetic aperture radar (SAR),
compressed sensing (CS), frequency-modulated continuous-wave
(FMCW) radar, SAR, sparse reconstruction.

I. INTRODUCTION

SYNTHETIC aperture radar (SAR) has been gaining pop-
ularity as it provides defined SAR images for surveillance

in various research areas. The conventional SAR hardware
system mounted on an aerospace platform is mostly a type
of pulse radar that requires high peak transmission power.
This leads to difficulties in generating high-power transmission
pulse and the cost is high. Another type of radar, namely,
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frequency-modulated continuous-wave (FMCW) radar, has
attracted attention as it leads to low manufacturing cost, small
size, and low constant transmission power, which overcome
the disadvantages of pulse radar systems [1]. In addition,
advances in signal generation hardware [e.g., direct digital
synthesizer (DDS) and high-speed digital-to-analog converter],
which have ameliorated linear frequency modulation (LFM)
with a wide sweeping bandwidth, have led to the emer-
gence of a high-resolution FMCW radar system [2]–[4].
FMCW SAR was first demonstrated in 2007 [5] with a new
signal processing algorithm only for FMCW SAR. Since
then, there has been a special interest in FMCW SAR
systems [6]–[9].

To guarantee a high-resolution SAR image, a high sampling
rate is mandatory according to the traditional Nyquist sampling
theorem. However, this requires an enormous amount of data,
long computational time, and considerable cost. Recently,
as an attractive alternative, compressed sensing (CS) has been
proved to be applicable to SAR signal processing. CS can
produce complete recovery of the original signal with fewer
measurements than the Nyquist sampling rate. He et al. [10]
combined CS with a multi-dictionary for SAR image recon-
struction. In [11], a segmented reconstruction strategy for CS
SAR imaging was introduced so that the reconstruction time
could be significantly decreased. Unlike other authors, who
did not consider range cell migration compensation (RCMC)
in their studies, Bu et al. [12] presented the CS SAR imaging
algorithm by considering RCMC as an intermediate step of
its scheme. However, all aforementioned schemes are suitable
for pulsed SAR. Therefore, the applicability of CS has been
explored for FMCW radar systems [13]. Becquaert et al. [13]
proposed CS SAR imaging, which can be applied to the
randomly subsampled FMCW signal in the range and azimuth
directions. Nevertheless, it is limited because sparse scenes
containing only a few scatterers are used for them to be sparse
and compressible in a transform domain. In contrast, FMCW
SAR raw data acquired from outdoor experiments include
many scatterers and are not sparse and compressible in the
frequency domain; this is insufficient to satisfy the essential
conditions of CS.

This paper proposes a new sparse scene recovery frame-
work, i.e., scaled CS, for automobile FMCW SAR system.
We analyze the limitation of CS reconstruction in both range
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and azimuth for FMCW SAR. The azimuth and range data
are neither sparse nor compressible in the frequency domain
due to the presence of many scatterers. Thus, it is impossible
to perfectly reconstruct FMCW SAR raw data. Nevertheless,
we apply CS to the raw data for sparse reconstruction.
We also show that the capability of CS to recover a sparse
scene can be significantly improved. We experiment with
an automobile as a radar platform to obtain SAR raw data.
This so-called automobile SAR experiment offers benefits
of easy modification and low cost compared to the case in
which the system is equipped on conventional SAR platforms
(e.g., satellite and airplane) [14]–[16]. It is also noted that
the speed of an automobile is considerably slower than that
of other SAR platforms. When the radar platform is an
automobile, an azimuth-matched filter applied to the azimuth
compression stage of the range-Doppler algorithm (RDA) not
only has a narrow bandwidth but also operates as a low-pass
filter. The low-frequency information of azimuth data spread
out in the Doppler frequency domain has a dominant effect on
azimuth focusing for single-look processing. In other words,
we only need low-frequency data within the bandwidth of the
filter to pass through for azimuth compression. Despite not
being sparse or compressible, we can assume that the data
required for azimuth compression are sparse and compressible
in the frequency domain. This means that we can exploit CS
to reconstruct SAR images from the subsampled raw signal.
Significantly, the conventional CS focuses on the recovery
of all frequency data instead of the low-frequency data.
To that end, we here propose a new reconstruction method,
called scaled CS, which is a modification of basis pursuit
denoising (BPDN) and improves the recovery performance of
low-frequency signals.

The remainder of this paper is organized as follows.
Section II introduces an automobile FMCW SAR signal
model. Section III provides a new reconstruction scheme for
automobile FMCW SAR through scaled CS. Section IV-A
describes the developed FMCW SAR system using DDS,
which can yield high-resolution images. Section IV-B explains
an automobile FMCW SAR experiment conducted on a high-
way. Section V presents the experimental results reconstructed
by the proposed algorithm with the analysis. Finally, conclu-
sions for this paper are drawn in Section VI.

II. AUTOMOBILE FMCW SAR SIGNAL MODEL

In this section, we introduce an automobile FMCW SAR
signal model to emphasize the characteristic of the automobile
platform. The signal transmitted from an FMCW radar can be
described as follows [17]:

sTX(t) = exp

{
j2π

(
fct + 1

2

Bswp

Tswp
t2

)}
(1)

where fc is the carrier frequency, t is the time variable within
the pulse repetition interval (PRI), Bswp is the LFM sweep
bandwidth of the transmitted baseband signal, and Tswp is PRI.
Bswp and Tswp are constants because we assume that LFM is
applied to generate a baseband signal. We also assume that the
system uses an ideal linear chirp modulation, which means

Fig. 1. Automobile FMCW SAR geometry in the zero-squint case.

that an additional calibration technique for residual-video-
phase removal is unnecessary. After reflecting off K stationary
targets, the received radar signal is given as follows [18]:

sRX(t) =
K∑

k=1

exp

{
j2π

(
fc(t−τk)+ 1

2

Bswp

Tswp
(t−τk)

2
)}

(2)

where τk is the time delay generated by the kth target and is
expressed as follows:

τk = 2Rk

c
(3)

where Rk is the kth target range and c is the speed of light.
After mixing with the transmitted and received signals by a
mixer, the obtained intermediate frequency is expressed as
follows:

sIF(t)=
K∑

k=1

exp

{
j2π

(
−fcτk − Bswp

Tswp
τk t+ 1

2

Bswp

Tswp
τ 2

k

)}
. (4)

The target range information can be extracted from the sec-
ond phase term of (4) called beat frequency, which is a
sinusoidal signal proportional to the time delay. We extract
the frequency information using a Fourier transform. Using
(3) and (4), the target range can be derived as follows:

Rk = cTswp fbeat,k

2Bswp
. (5)

In terms of digital data acquisition, the maximum target
range is determined by the highest beat frequency stored,
which is limited by the sampling rate in the data acquisition
process. Hence, the sampling rate needs to be increased to
obtain a wide swath range. In addition, as the range resolution
is inversely proportional to the sweep bandwidth, a wide sweep
bandwidth is required to obtain a high range resolution for
FMCW SAR images. In contrast, widening the bandwidth
causes a decrease in the pulse repetition frequency (PRF). The
fact that the Doppler bandwidth is larger than the PRF results
in azimuth ambiguity because of aliasing caused by a lack of
sampling rate.

An automobile FMCW SAR geometry in the zero-squint
case is shown in Fig. 1. As an automobile platform moves
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along its path with its velocity Vauto, the strength of the
received signal varies with azimuth time η due to an azimuth
beam pattern. Then, the demodulated received signal after the
range compression of RDA can be expressed by [19]

Src( fτ , η) ≈
K∑

k=1

A0,k Wr [ fτ − fbeat,k]wa(η − ηc)

× exp

{
− j

4π fc R0

c

}
exp{− jπ Kaη

2} (6)

where A0,k is the magnitude of the kth target, which indicates
the backscatter coefficient, Wr is the compressed pulse enve-
lope in the range direction, wa is the received signal strength
as the function of azimuth time, ηc is the beam center-crossing
time, R0 is the range of the closest approach to a target, and
Ka is the azimuth FM rate. This approximation is valid for
the low-squint case. The azimuth FM rate in the zero-squint
case is derived as follows:

Ka = 2

λ

d2 R(η)

dη2

∣∣∣∣
η=ηc

= 2 V 2
auto

λR0
. (7)

The azimuth FM rate involves the azimuth-matched filter,
which is applied to focus the data in the azimuth direction
after RCMC of RDA. The matched filter for an azimuth
compression is expressed as follows:

Ha( fη) = exp

{
− jπ

f 2
η

Ka

}
. (8)

Equation (8) is a complex conjugate of the last exponential
term in (6) after azimuth fast Fourier transform (FFT) of RDA.
The velocity of the automobile platform is significantly lower
than the velocity of satellites and airplanes; this means that
the azimuth FM rate of the automobile SAR is less than the
rate of the airborne and spaceborne SARs from (7). Therefore,
in the automobile SAR, the bandwidth of the matched filter
is extremely narrow when the PRF is high enough to avoid
the azimuth ambiguity in accordance with (8). For the proof
of the above fact, we carry out a matched filter simula-
tion in cases of an automobile, an airplane, and a satellite
with the following parameters: carrier frequency 14.25 GHz,
PRF = 5000 Hz, FFT size = 8192 bins, the target exposure
time 1 s, the automobile velocity 22.22 m/s, the airplane
velocity 88.89 m/s, the satellite velocity 3000 m/s, the range
of the closest approach with the automobile 400 m, the range
of the closest approach with the airplane 4 km, and the range of
the closest approach with the satellite 840 km. The results are
shown in Fig. 2. Fig. 2 shows that the matched filter in the
automobile SAR signal processing operates like a low pass
filter with the less narrow bandwidth compared to the other
radar platforms. For this reason, in the range-Doppler domain
of the automobile SAR, a region near to the zero Doppler
frequency is dominant in obtaining a clear image under a
single-look processing.

III. PROPOSED RECONSTRUCTION SCHEME

THROUGH SCALED CS

A. CS
To guarantee the complete reconstruction of an original

signal, a frequency of twice its bandwidth is configured as

Fig. 2. Matched filter simulation for azimuth compression when radar
platforms are an automobile, an airplane, and a satellite.

the sampling rate in the data acquisition process according
to the Shannon–Nyquist sampling theorem. However, CS has
been recently introduced as an attractive alternative [20], [21].
This theory can reconstruct sparse or compressible signals
with much fewer measurements than the number of samples
required by the Nyquist theorem. In this section, we briefly
introduce the concept of CS.

Let us consider that ytotal∈R
N is L-sparse in a basis, which

can be mathematically modeled as follows [13], [22]:
ytotal = �x (9)

where � is an N × N transformation matrix. In this paper,
we utilize the inverse fast Fourier transform (IFFT) as a
transformation matrix to recover a scene. x is an N × 1
column vector with L nonzero elements, which means that
‖x‖0 = L � N . Suppose that the N coefficients of the signal
x are not obtainable from direct measurement. We obtain an
M × 1 linear measurement vector y ∈ R

L using an M × N
measurement matrix � from ytotal with L < M � N . The
measurement matrix means that we measure fewer samples
from the vector ytotal. Equation (9) can be rearranged in terms
of the matrices introduced above

y = � ytotal = �� x = � x (10)

where � is a sensing matrix. As M < N , it is impossible to
obtain a unique solution by solving (10). However, the signal x
is sparsely representable, which means that the reconstruction
of signal x from measurements y is available. The signal x can
be recovered exactly by solving the following l1-minimization
problem:

x̂ = arg min ‖x‖1 such that y = � x . (11)

Using linear programming methods, this optimization prob-
lem can be solved. For a more realistic case, (10) can be
rearranged by adding measurement noise [22]–[24]

y = � x + η (12)

with ‖η‖2 ≤ ε, which means that ε is an upper bound of the
l2-norm of noise. In other words, ε is determined by the noise
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power. In our case, the noise is assumed to be white Gaussian
noise, according to the central limit theorem, because it is
caused by an infinite number of sources in a realistic case [25].
Several optimization problems can be used to obtain a signal
closest to the original

x̂ = arg min ‖x‖1 such that ‖y − � x‖ ≤ ε. (13)

We exploit this optimization problem, also known as
BPDN, to achieve a sparse scene recovery of our automobile
FMCW SAR.

B. Feasibility Study on CS FMCW SAR
From Section III-A, the following three conditions can be

summarized to apply CS to sparse reconstruction [23].
1) The vector x is sparse and compressible.
2) The number of measurements should satisfy the follow-

ing inequality:
M ≥ cL log

N

L
. (14)

3) The sensing matrix � plays a key role in estimating the
sparse vector x from the undersampled signal y. The
sensing matrix should follow the restricted isometric
property (RIP), which is

(1 − δL)‖x‖2
2 ≤ ‖�x‖2

2 ≤ (1 + δL)‖x‖2
2 (15)

where δL is an isometry constant. This is the smallest
constant among the constants satisfying (15). An isome-
try constant close to zero ensures that the sensing matrix
has satisfactory RIP; this enables recovery with CS to
reconstruct the undersampled signal perfectly with high
probability.

In general, as a simple solution, random sampling is selected
to bring the isometry constant closer to zero. For this reason,
we utilize a random sampling matrix as the measurement
matrix for sparse reconstruction. Under these conditions,
the signals restored with CS are the same because it guarantees
perfect recovery even with different samples. Conversely,
if the three mandatory conditions are not met, the results
reconstructed with different samples can be different.

Let us examine the applicability of CS to the FMCW
SAR dataset from these conditions. The applicability can
be seen by considering CS reconstruction along a range or
azimuth direction of the dataset because we use IFFT as a
transformation matrix of (9). First, we consider the feasibility
of CS reconstruction along the range direction in FMCW SAR.
We extract range information of a target using FFT, which is
a simple process as a range compression stage compared to
the conventional pulsed SAR. In other words, after range FFT,
each frequency component in the frequency domain denotes
the range information of each target. For a typical SAR
simulation, a few stationary targets in a scene are assumed
as scatterers for easy implementation. After range FFT, only
a few beat frequency components in the frequency domain
are generated by a few scatterers. Therefore, the signal is
sparse and compressible in a frequency basis; this enables
undersampled raw data in the range direction to be applied
by CS for a sparse reconstruction [13]. However, in a realistic

case, there are countless scatterers on the ground, which means
that the signal in the frequency domain is not sparse and
compressible. For this reason, in the range direction, the CS
method is not applicable to exactly reconstruct the subsampled
data or data loss of FMCW SAR.

Second, a signal in the azimuth direction is also not sparse
and compressible in the frequency domain. Nevertheless,
in the case of automobile FMCW SAR, note that the azimuth
compression-matched filter has an extremely narrow band-
width, as mentioned in Section II. Thus, the low-frequency
signal within the bandwidth of the filter is essential to pro-
duce an automobile SAR image because of the narrow filter.
Suppose that the other frequency data are noise because the
data are not essential for providing a defined SAR image.
We can then assume that the signal within the bandwidth,
which should be used in azimuth compression, is sparse and
compressible. Through this approach, we identify that a typical
CS is applicable to the subsampled signal along the azimuth
direction for the sparse recovery. On the other hand, if the three
requirements for perfect reconstructions cannot be completely
met, the typical CS does not ensure to perfectly reconstruct the
low-frequency signal in the Doppler domain. This is because
CS mainly focuses on all frequency data recovery under the
unsatisfactory conditions. To overcome this, we will intro-
duce scaled CS with its improved recovery performance for
low-frequency signals in Section III-C.

C. Scaled CS
As mentioned in Section III-B, low-frequency data in

azimuth are significant for producing automobile FMCW SAR
images. In this section, we propose a new CS scheme, called
scaled CS, to improve the recovery performance for low-
frequency data along the azimuth direction for each range bin.
Scaled CS is defined as follows:
x̂ = arg min ‖x‖1 such that

∥∥∥∥ 1

kscale
y − �

(
1

kscale
x

)∥∥∥∥ ≤ ε

(16)

where kscale is a scale factor such that kscale > 1. Equation (16)
is based on BPDN.

In case of the automobile FMCW SAR, a low-frequency
signal in azimuth has a dominant power level. The relative
motion of the radar platform and the target causes a Doppler
shift of the received signal. The average Doppler shift in
the azimuth direction is called the Doppler centroid, which
is proportional to the platform velocity. The centroid should
be estimated from a geometry model and the received signal
because it is distinctly noticeable in the azimuth direction.
However, in case of automobile FMCW SAR, the Doppler
centroid estimation is not essential due to the particular
slower velocity than the other platforms; this means that the
Doppler shift is close to zero if there is no moving target.
In addition, the azimuth bandwidth of the received signal is
narrow compared to that of other radar platforms. In a zero-
squint mode, azimuth bandwidth of a target can be described
as follows [19]:

� fdop =
∣∣∣∣2Vauto cos θr,c

λ
θbw

∣∣∣∣ = 2Vauto

λ
θbw (17)
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Fig. 3. Azimuth raw signal in the Doppler domain, which is extracted at the
same range bin of the real raw data matrix measured in our field test.

where θbw is the 3-dB width of the radar beam. Equation (17)
indicates that the automobile SAR produces a narrower
azimuth bandwidth of the received signal as compared to other
SAR platforms. Fig. 3 shows azimuth raw data in the Doppler
domain, which are extracted at a range bin of real raw data
matrix measured in our field test. We can check that the power
level of the low frequency is considerably higher than that
of the high frequency. For these reasons, the low-frequency
information in azimuth has a dominant impact on providing
an automobile SAR image because of both the large magnitude
of the low-frequency signal and the extremely narrow azimuth-
matched filter. The proposed method, therefore, focuses on the
low-frequency signal reconstruction. As the power level of the
low frequency is dominant, we can assume the other frequency
signal to be noise. By expanding ε in (13), we can consider the
high-frequency signal to be noise. Because its magnitude is as
small as negligible, this enables sparse reconstruction with CS
to concentrate on the low-frequency region within the band-
width of the azimuth-matched filter. In this regard, the simply
modified optimization problem is defined as follows:

x̂ = arg min ‖x‖1 such that ‖y − � x‖ ≤ kscaleε. (18)

However, directly expanding the error range in (18) requires
a long computational time. Thus, we propose (16) by trans-
posing the scaled parameter kscale to have the same effect
on (16) as that with (18). To compare the performances
of (16) and (18), we conduct a signal recovery simulation
with azimuth data (500 samples) acquired from our field test.
We measure the elapsed time of the signal recovery 1000 times
using a different random sampling matrix for each attempt
with a stopwatch function. Table I provides the average elapsed
time in the simulation to compare the recovery efficiencies
of (16) and (18).

Table I shows that the average elapsed time obtained with
(16) is shorter than that obtained with (18); this means that
our recovery method with (16) is efficient compared to simply
expanding the error limit. Thus, we propose the recovery
method with (16), scaled CS, as our main concept.

For the proof of the improved performance of our scaled CS,
we conduct a simulation in cases of subsampled data

TABLE I

AVERAGE TIME FOR SIGNAL RECOVERY WITH (16) AND (18)

reconstruction in the azimuth direction via a typical CS and a
scaled CS. Designing the matrix � is an essential problem to
achieve an exact reconstruction with CS. Consequently, we use
a random slow-time undersampling as the random sampling
matrix of � to demonstrate the enhanced sparse scene recovery
of the scaled CS. This undersampling scheme is defined as
sampling at random intervals along the azimuth direction,
whereas the basic undersampling is a way to periodically
sample data at regular intervals with multiple PRFs. This
method enables the sensing matrix � to contain satisfactory
RIP [26]. Moreover, in terms of hardware, the scheme provides
easier implementation than random fast-time undersampling
by randomly selecting a few LFM chirps. This sampling plan
indicates a minor change in the automobile FMCW SAR
system. For these reasons, the reconstruction simulation using
randomly undersampled real data (20% of data used) has been
performed with the following parameters: total number of data
500 samples, number of subsampled data 100 samples, carrier
frequency 14.25 GHz, PRF = 5000 Hz, FFT size = 512 bins,
and automobile velocity 22.22 m/s. High PRF enables azimuth
data to be more compressible in the Doppler domain; this
means that the recovery performance of CS with a high PRF
is improved. In this simulation, as PRF is determined by
considering various factors, PRF of our SAR system is used for
practical cases. We exploit the same random sampling matrix
to compare the typical CS and the proposed CS. Fig. 4 shows
the reconstructed data in the azimuth direction by using our
proposed method (the scale factor is 10) and the original CS.
We can check that the signal recovered by our method is
sparser and more compressible in the Doppler domain than the
signal recovered by a typical CS. The recovered signal with
the scaled CS also has a significantly higher magnitude in the
low-frequency region. Fig. 4 demonstrates that the scaled CS
leads to a better reconstruction of low-frequency data.

Next, we examine another recovery simulation to identify
whether the larger scale factor of our method causes a bet-
ter recovery performance with the mean absolute percentage
error (MAPE). In this simulation, we use 16 384 samples as an
original signal in the azimuth direction. As the scale value is
increased, the randomly undersampled data (10%, 20%, 30%,
and 40% of data used) are recovered with our method. In this
simulation, the same random sampling matrix is utilized. After
the recovery, we compare the original and recovered signal
samples (90 samples in our case) within the 3-dB bandwidth
of the azimuth-matched filter in terms of magnitude and phase
using MAPE. Fig. 5 shows the simulation result of magnitude
MAPE versus the scale value of our method. Fig. 6 presents
the simulation result of phase MAPE versus scale value of our
method. Figs. 5 and 6 indicate that the increasing scale value
leads to less-magnitude MAPE and phase MAPE. However,
these MAPEs are saturated at a certain number or more.
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Fig. 4. Simulation result of data reconstruction with scaled CS (scale factor = 10) and the typical CS (BPDN) using randomly undersampled real data (20%
of data used). The recovered signal with scaled CS is sparser and more compressible and has a higher magnitude in the low-frequency region than that with
typical CS.

Fig. 5. Simulation result of magnitude MAPE between reconstructed and
original signals within the 3-dB bandwidth of the azimuth-matched filter in
our case versus the scale value of our method. The 10%, 20%, 30%, and
40% of data are used as subsampled data. Increasing scale value leads to less
magnitude MAPE. However, the MAPE is saturated at a certain number or
more.

Fig. 6. Simulation result of phase MAPE between reconstructed and original
signals within the 3-dB bandwidth of the azimuth-matched filter in our case
versus scale value of our method. The 10%, 20%, 30%, and 40% of data are
used as subsampled data. Increasing scale value leads to less phase MAPE.
However, the MAPE is saturated at a certain number or more.

From these simulation results, this proposed scheme yields
an improved performance in terms of low-frequency signal
reconstruction in the Doppler domain compared to the con-
ventional CS.

IV. KU-BAND AUTOMOBILE FMCW SAR
SYSTEM AND EXPERIMENT

A. Architecture of Ku-Band Automobile FMCW SAR System

We have designed an automobile FMCW SAR system to
demonstrate the proposed CS scheme [27], [28]. The system
is composed of a DDS, a block upconverter (BUC), a low-
noise amplifier (LNA), and USRP N210, as shown in Fig. 7.
We apply a type of heterodyne conversion structure to our
system. All oscillators of the proposed system are fully
synchronized by a reference clock with low phase noise for
coherent operation.

In the FMCW radar system, LFM signal generation is
extremely important because a nonlinear transmitted chirp
signal degrades the range resolution by inducing a broad
spectrum and spurious elements of the beat frequency. In fact,
the nonlinear signal leads to target range ambiguity. Hence,
we utilize a DDS called AD9914 to accurately generate an
LFM chirp signal with high linearity. Moreover, to achieve
high-resolution SAR images, a wide sweep bandwidth should
be simultaneously considered because the range resolution is
inversely proportional to the sweep bandwidth. Consequently,
the baseband signal in our system periodically sweeps from
950 to 1450 MHz in a 200-μs period from the tradeoff between
its sweep time and sweep bandwidth. The flatness of the
sweep signal power is guaranteed within the 3-dB frequency
domain. The linear DDS signal is mixed with 13.05-GHz low-
phase noise in the Ku-band BUC. After the BUC, the signal
from 14 to 14.5 GHz is radiated from the Tx-corrugated horn
antenna with a power of about 39 dBm. We use two corrugated
horn antennas to take advantages of their wider bandwidth,
lower sidelobe, and lower cross-polarization than a standard
horn antenna.

In the receiver of the designed system, we apply dual IF
stages, which can easily overcome an image frequency prob-
lem and improve the system selectivity. The received signal
reflected to the target is downconverted into the first IF signal
after going through the LNA. As a result, an image frequency
component is generated by mixing the RF signal with the local
oscillator (LO) signal. From the receiver perspective, the image
frequency component results in a critical problem that directly
distorts the IF region, whereas the component in the transmitter
is an unintended spurious component. Moreover, the image
frequency rejection on the first IF stage is effective because
the first IF causes a wider gap between the LO signal than
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Fig. 7. Block diagram of the Ku-band automobile FMCW SAR system.

TABLE II

SPECIFICATIONS OF THE KU-BAND AUTOMOBILE FMCW SAR SYSTEM

Parameters Specifications

LFM Sweep Bandwidth 500 MHz 
PRI 200 µs 
LFM Sweep Type Sawtooth 
Center Frequency 14.25 GHz 
Transmission Power 39 dBm
Antenna Type Corrugated Horn Antenna 
Antenna Gain 16 dBi 
Antenna 3dB Beamwidth 34  

Fig. 8. Tx and Rx antenna configuration on a van.

Fig. 9. Aerial photograph of Ku-band automobile FMCW SAR field test
site. A trihedral corner reflector was fixed at the center of the test site for the
corner reflector profile analysis.

the second one. For these reasons, we insert an isolator at
the LNA output to filter out the harmful components. We then
add several isolators to prevent a reflected wave. The first IF is

Fig. 10. Ku-band automobile FMCW SAR image field test site. The image
covers an area of 555 m (azimuth direction) × 630 m (range direction). This
figure shows that our system is valid for automobile FMCW SAR image
processing.

mixed down to the second IF to meet the desired selectivity of
our system. As the improved selectivity reduces the required
Q factor of the RF component, we add a simple low-pass filter
through which the second IF is passed into USRP N210.

We then utilize USRP N210 to extract the digital quadrature
demodulation data from the filtered signal. In USRP N210,
digital signal processing is executed in software based on
GNU radio to create a raw data form, producing an FMCW
SAR image. Table II provides specifications of the automobile
FMCW SAR system.

B. Ku-Band Automobile FMCW SAR Field
Test in Stripmap Mode

To evaluate the proposed algorithm, we conduct a Ku-band
automobile FMCW SAR field test in the stripmap mode using
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Fig. 11. Proposed sparse scene recovery algorithm for automobile FMCW SAR through scaled CS.

a van on a high bridge, called Saedeul Bridge, in Gong-Ju,
South Korea. This bridge rose to a height of about 100 m. The
experiment on the high bridge provides a wide observation
area, whereas other ground-based SAR experiments provide
narrow observation areas. In our case, the observed swath
is about 600 m. As shown in Fig. 8, Tx and Rx antennas
are mounted on the roof of the van and perfectly aligned
toward the ground under the bridge. Except for the mounted
components on the roof, the other parts of our system are
installed inside the van. We drive the van at a constant velocity
of 80 km/h on the bridge, while in-phase and quadrature-phase
raw data are automatically saved on a PC. A trihedral corner
reflector with 50-cm edge length is fixed on the scene center
of the ground for a resolution test, as presented in Fig. 9. After
the experiment on the bridge, we process the raw dataset to
form an FMCW SAR image by conventional RDA, as shown
in Fig. 10. It is obvious that there is no difference between the
SAR image and aerial photograph of the test site captured with
our drone, as detailed in Fig. 9.This result is clear evidence
that the proposed system is valid for automobile FMCW SAR
image processing.

V. REAL DATA DEMONSTRATION

A. Proposed Reconstruction Algorithm Through Scaled CS

In this section, to verify the realistic performance of our
CS method, we propose a reconstruction algorithm through
scaled CS for sparse scene recovery, as described in Fig. 11,
which is based on commonly used RDA for SAR image
processing. We construct a raw dataset by stacking one chirp
corresponding to the received signal during the PRI of our
SAR system specifications. As mentioned in Section III-C,
we randomly select an arbitrary chirp as the random slow-time
undersampling scheme to intentionally construct the missing
data set. Then, the dataset is passed on to the range compres-
sion stage, where we simply apply the range FFT to the data
in the range direction. This is an advantage of FMCW SAR,
which can reduce the algorithm complexity and computation
time because the range compression in case of pulsed SAR is
composed of range FFT, matched filter implementation, and
range IFFT.

As the next stage, we add scaled CS to the proposed
algorithm, instead of azimuth FFT and RCMC stages,

to reconstruct subsampled data in the azimuth direction.
We utilize IFFT as the transformation matrix of the scaled CS.
Therefore, the recovered data in the frequency domain are
obtained after the scaled CS; this means that we can eliminate
the need for an additional azimuth FFT.

We remove the RCMC stage because it is not essential for
image processing in our case. As a radar platform advances
along its path, the distance between the target and the sensor
changes. In signal memory, when the variation is larger than
the range resolution, this migration through the range cells
is called RCM. In general, RCMC is an essential feature
for a high-resolution SAR image. However, in our case,
the bandwidth of the matched filter for azimuth compression is
extremely narrow due to the slow velocity of an automobile,
as mentioned in Section II. Therefore, in the range-Doppler
domain, the hyperbolic trajectory caused by RCM within
the narrow bandwidth is regarded as a straight line. This
means that we can produce acceptable enough automobile
SAR images without RCMC. A reconstructed image is then
finally produced by the proposed reconstruction algorithm
after azimuth compression and azimuth IFFT, which are
generally used in RDA.

The movement of the sensor within PRI should be consid-
ered in case of FMCW SAR because its sweep time is signif-
icantly longer than the pulse length of the conventional pulse
SAR systems [5], [9], [29], [30]. Nonetheless, the velocity of
our automobile platform is sufficiently slow to be supposed
stationary during the sweep time compared to aircraft and
satellites. For this reason, our algorithm is used for sparse
scene recovery under stop-and-go approximation without an
additional compensation procedure.

B. Experimental Results and Discussion

To validate our algorithm, we produce an original image
(100% data are used) and reconstructed images (20% data are
used), as shown in Fig. 12. Fig. 12(a) shows the processed
image with typical RDA to evaluate the performance of the
reconstruction algorithms with a typical CS and our method.
Fig. 12(c) indicates the image recovered with general CS, and
Fig. 12(e) illustrates the image reconstructed with scaled CS
as our main concept. Fig. 12(b), (d), and (f) shows the cross-
range profiles of the trihedral corner reflector visible in the
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Fig. 12. Experimental results of the processed automobile FMCW SAR images. (a) Original image processed with typical RDA (100% data are used).
(b) Cross-range profile of the corner reflector shown in (a). (c) Reconstructed image with typical CS (BPDN) (20% data are used). (d) Cross-range profile of
the corner reflector shown in (c). (e) Reconstructed image with the proposed algorithm through scaled CS (20% data are used). (f) Cross-range profile of the
corner reflector shown in (e). These SAR images cover an area of 220 m × 630 m. The reconstructed images show considerable reconstruction performance
compared to the original image. The reconstructed image with our method indicates that the proposed algorithm through scaled CS has a better ability to
recover the subsampled data than the algorithm with a typical CS.

TABLE III

RESULTS OF THE CROSS RANGE PROFILE ANALYSIS WITH THE TRIHEDRAL CORNER REFLECTOR

center of these SAR images detailed in Fig. 12 for cross-range
profile analysis.

Compared to the original image, the reconstructed images
show considerable scene recovery performance, even though
20% of the original data are used. The image in Fig. 12(c)
does not appear to be much different from that in Fig. 12(e)
with naked eyes. However, the white vertical solid line of the
cross-shape in Fig. 12(e), which indicates the corner reflector,

is shorter than the solid line in Fig. 12(c). This shorter solid
line indicates better performance for synthesizing cross-range
data into a point on the scene. In fact, the proposed reconstruc-
tion algorithm with scaled CS has a better ability to recover
randomly subsampled data than the algorithm with typical CS
in case of automobile FMCW SAR. To evaluate the quality
of these recovered images with definite values, we report
the results of the cross-range profile analysis with the corner
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reflector, as detailed in Table III. We recognize that the peak
level increases by almost 10.61 dB. In addition, the integrated
sidelobe ratio (ISLR) and the peak sidelobe ratio (PSLR)
improve by approximately 0.55 and 1.24 dB, respectively.
ISLR is the ratio of the integrated sidelobe power and the
integrated main lobe power. PSLR is the ratio of the peak level
of the largest sidelobe and that of the main lobe. In our case,
we count the area of the single-resolution cell around the max-
imum peak level as the main lobe. In terms of azimuth resolu-
tion at −3 and −10 dB, these reconstructed images are almost
the same as the original image. These results indicate that the
proposed reconstruction algorithm with scaled CS improves
the performance of sparse scene recovery in case of automobile
FMCW SAR.

VI. CONCLUSION

This paper proposed a new method for recovering a
sparse scene from the subsampled data of automobile
FMCW SAR. Based on the theoretical background presented,
the applicability of CS to automobile FMCW SAR was
verified. Although it is impossible to perfectly reconstruct the
FMCW SAR raw data, we here showed that a sparse scene
can be fairly recovered using CS. As described above in detail,
low-frequency data in the azimuth direction are important for
automobile FMCW SAR, to generate high-resolution SAR
images due to an extremely narrow bandwidth of the azimuth-
matched filter. Sparse reconstruction using a typical CS is
limited because CS is mainly focused on the recovery of all
frequency data. Scaled CS was therefore proposed to improve
the performance of the low-frequency information recovery
from randomly subsampled data. The proposed reconstruction
algorithm through scaled CS was validated using the experi-
ment results. The reconstruction performance of the proposed
algorithm was described in comparison with a typical CS.
Most notably, our method produced a novel approach for
restoring a sparse scene with scaled CS, which utilizes the
slow speed of the automobile platform.

The combination of FMCW SAR and CS can maximize
the benefits, which not only is attractive for conventional
aerospace applications but also can meet the commercial needs
of new automotive applications. Although FMCW SAR and
CS require a long computation time, the related industrial
and scientific communities have recently started research to
overcome the disadvantage [31]–[34]. Further research should
be directed at determining the applicability to millimeter-wave
automotive radars with CS and SAR imaging [35]–[37].
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