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Abstract— We propose a drone classification method for polari-
metric radar, based on convolutional neural network (CNN)
and image processing methods. The proposed method improves
drone classification accuracy when the micro-Doppler signature
is very weak by the aspect angle. To utilize received polarimetric
signal, we propose a novel image structure for three-channel
image classification CNN. To reduce the size of data from four
different polarization while securing high classification accuracy,
an image processing method and structure are introduced. The
data set is prepared for a three type of drone, with a polarimetric
Ku-band frequency modulated continuous wave (FMCW) radar
system. Proposed method is tested and verified in an anechoic
chamber environment for fast evaluation. A famous CNN struc-
ture, GoogLeNet, is used to evaluate the effect of the proposed
radar preprocessing. The result showed that the proposed method
improved the accuracy from 89.9% to 99.8%, compared with
single polarized micro-Doppler image. We compared the result
from the proposed method with conventional polarimetric radar
image structure and achieved similar accuracy while having half
of full polarimetric data.

Index Terms— Convolutional neural network (CNN),
micro-Doppler signature (MDS), radar signal analysis, radar
signal processing.

I. INTRODUCTION

RECENTLY, microdrones are popular for many civil areas
such as logistics, hobby, and professional aerial record-

ings because of technical advance and low price. However,
these drones need monitoring and regulation since it may occur
dangerous accidents in the air or abused for criminal acts [1].
For this reason, drone detection and classification are required
to radar surveillance system. However, the classification is
not easy since drones have low radar cross section (RCS),
as similar to birds [2].

After Chen et al. [3] published micro-Doppler theory, it is
widely applied to various radar targets with micromotions
for detection, classification, and recognition problems. With
micro-Doppler analysis, classifying the drone with the bird
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becomes possible since the difference between them is sig-
nificant [2]. However, there is a problem that radar detection
and micro-Doppler analysis are affected by the aspect angle,
which is between the line of sight of radar and the normal
axis of target. When the aspect angle is close to 90◦, the RCS
becomes minimum and micro-Doppler signature (MDS) van-
ishes, making detection and classification hard [2], [6]–[9].

To overcome this difficulty, utilizing both time and fre-
quency domain analysis of MDS is presented in [4] and
polarimetric signal analysis is shown in [5]. To classify small
consumer drones, polarimetric radar has advantages compared
with single polarization radar when they have 90◦ aspect
angle [5]. In other radar application area, polarimetric radar
can obtain various features from multiple polarized radar
signals [6], [8], [10]–[12]. Thus, in this letter, an improved
drone classification is proposed using micro-Doppler data from
polarimetric radar.

After Kim et al. [13] utilized the convolutional neural net-
work (CNN) to classify the MDS, many researches [14]–[16]
are presented the high classification accuracy of CNN for
Doppler feature-based radar classification problem. These lit-
eratures utilized the alpha and omega of CNN, which extracts
feature from image structured data. However, by applying
proper preprocessing, the accuracy of classification algorithm
can be improved [4]. In this letter, we adopt a well-known
image signal processing method for radar preprocessing for
CNN to reduce total amount of polarimetric data and compress
irrelevant information from MDS.

Therefore, we propose a new image structure for radar clas-
sification problem, named polarimetric merged-Doppler image
(PMDI). The proposed radar image structure emphasizes the
periodicity of MDS, represents multipolarization characteris-
tic, and filters out irrelevant information with the same image
data size. To evaluate the proposed method, the classification
accuracy is compared with Pauli-RGB and Sinclair, which are
conventional polarimetric radar image structure.

The rest of this letter is organized as follows. In Section II,
the radar experiment setup and method of extracting polarimet-
ric MDS from a radar target is described. Section III introduces
the proposed image structure and its classification results with
comparison. Finally, Section IV presents our conclusions of
this study.

II. RADAR EXPERIMENT SETUP AND SIGNAL PROCESSING

A. Drones and FMCW Radar System
In this letter, we defined the target of interest for the classi-

fication problem as bird-like drone, three-bladed drone with
same rotating direction, and six-bladed drone (hexacopter)
with three clockwise and three counterclockwise direction.
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Fig. 1. Appearance of a bird-like drone manufactured by XTIM.

Fig. 2. Appearance of a hexacopter manufactured by HobbyLord.

Because these targets operate with distinct rotation and move-
ment, which determines the MDS from the target. Also, the
weight, appearance, and material of the blade also affect
the MDS of the drone, as reported in the literatures and
conferences [2], [6], [8]. In this letter, we added bird-like
drone to investigate the feasibility of proposed method for
nonrotating object.

We investigated the MDS from a bird-like drone by bionic
bird and a hexacopter by HobbyLord Corporation. Their
appearances are presented in Figs. 1 and 2. The laboratory
three-bladed drone is presented by removing three motors from
hexacopter.

The frequency modulated continuous wave (FMCW) radar
hardware setup is mostly the same as previous studies [4], [5].
In summary, the bandwidth of FMCW signal is 150 MHz and
its center frequency is 14.1 GHz with 1-W transmitting power.
The FMCW waveform is configured as follows. The sweep
time is 250-μs and sampling rate is 1 Msps. For one MDS
image generation, samples from total 2000 chirp are used,
which correspond to 0.5 s. The MDS is obtained by adopting
the short-time Fourier transform (STFT). At first, we processed
the received FMCW samples into 2-D range-Doppler matrix
as described in [17]. After that, we applied discrete-STFT with
the following equation [18]:

MDS = X (m, ω) =
∑

x[n] · ω[n-m]e− jωn (1)

where ω[n] refers the windowing function and x[n] is
the Doppler data at certain range bin from range-Doppler
matrix. We applied hamming window and overlapping length
of 31 samples. After processing discrete-STFT, we applied
additional fast Fourier transform (FFT) along time axis of
MDS image to (1) to generate the cadence velocity diagram
(CVD) image

CVD =
∑

X (m, w) · e− j 2π
N kn (2)

MDI = concatenate(MDS, CVD). (3)

By filtering MDS and CVD image with custom color map-
ping and concatenating them, we can obtain an MDI image
from single polarization. The example of single polarization
MDI from the target is presented in Table I.

B. Experiment Setup in Anechoic Chamber

By supposing a drone flying in the air without any other
heavy clutters such as building or power transmission tower,

Fig. 3. Measurement setup of micro-Doppler with different aspect angle in
the anechoic chamber. Tx and Rx Antenna is separated in xy plane. Note that
the aspect angle of vertical fixation is 90◦ and that of horizontal fixation is 0◦.

TABLE I

MEASURED MICRO-DOPPLER IMAGE FROM MICRODRONES
FOR DIFFERENT POLARIZATION AND ASPECT ANGLE

the airborne environment will be similar to anechoic chamber
with very low transmit power. To evaluate feasibility of the
proposed method, we measured the polarimetric radar signal
in the anechoic chamber for fast evaluation, with decreased
transmit power from 1 to 30 W.

As depicted in Fig. 3, a target is fixed vertically or
horizontally to represent both maximum and minimum
aspect angle (angle between target and radar line of sight).
The transmitting and receiving antenna of radar system is
separated by 0.8 m. To obtain enough data, the measurement
is repeated by randomly changing target distances 5 ±1 m.

The measured data are processed as described in the pre-
vious section. The matrix data are presented as an image for
input data set for CNN. In this letter, we used six different
image types to compare the drone classification performance:
1) basic MDS [2]; 2) CVD [21]; 3) merged-Doppler image
(MDI) [4]; 4) PMDI with Pauli-RGB component (PMDI-
Pauli); 5) polarimetric MDI with Sinclair component (PMDI-
Sinclair); and 6) polarimetric MDI with 2-D cross correlation
(PMDI-xcorr2). The details of image type, generation method,
and its physical meaning will be described in Section III-B.
The examples of three polarimetric MDIs are presented
in Table II.

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on March 10,2021 at 07:18:02 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KIM et al.: IMPROVED DRONE CLASSIFICATION USING PMDIs 3

Fig. 4. Comparison of color mapping between intensity-based image,
grayscaled RGB, and Proposed Color mapping.

C. CNN and Radar Data Set

As shown in many literatures, CNN proved its excel-
lent classification performance in radar classification prob-
lem [13]–[16]. In some literature, authors proposed novel
neural network design and hyperparameter tuning for radar
application. However, we first focused on radar data pre-
processing because understanding target’s characteristic and
representing it to data set are also important job for better
performance.

Therefore, we used the popular CNN model developed by
Szegedy, known as GoogLeNet, inception-v1. The GoogLeNet
utilizes inception module with four different types of con-
volution and pooling operation, which enables higher com-
putational efficiency than AlexNet [14]. The NVIDIA Deep
Learning GPU Training System (DIGITS) is employed as
neural network implementation. With our heuristic approach,
we decided hyperparameters for the network. The learning rate
starts from 0.001 with stochastic gradient descent algorithm
with batch size of 4. Initialization and other parameters are the
same as [14]. Totally, 342 000 images are used in this study
for six different image types as described in Section II-B.
Each radar image data set consists of 57 000 images, for six
classes, which are three different targets with two measurement
direction.

Because the data set is smaller than conventional image
classification problem, we applied a fourfold cross-validation
method [20]. From a total of 57 000 image data sets,
50000 images randomly selected. The classification accuracy
for an input image type is obtained by averaging the results
for each four-fold. The test set is consisted of a total of
3000 images for six classes.

III. PMDI FOR TARGET CLASSIFICATION USING CNN

A. Image Processing Techniques for Polarimetric Data

As shown in [4], the rotation of blade from microdrone
produces various MDS in each aspect angle and polariza-
tion. Utilizing radar signals from multiple polarization results
increases the total amount of data for radar signal processing.
In terms of CNN, it is possible to extend channel of network
for multiple image or concatenate images from multiple polar-
ization into one image. However, it is not efficient for real-time
surveillance since the computational budget will be increased
significantly. Therefore, it is required to reduce total data size
even if we use multiple polarization radar signal.

In polarimetric SAR image, the Pauli-RGB and Sinclair
pseudocolor coding is the most popular method to generate
an image from grayscale images from each polarization.
To reduce total data size, a colored micro-Doppler image
can be converted with grayscale function or certain color
channels are utilized like a filtering. Yong et al. [22] presented
an automatic feature extraction by filtering out red and blue

TABLE II

COLOR CODING SCHEMES OF THREE DIFFERENT PMDIS

TABLE III

CONVENTIONAL AMPLITUDE-BASED COLOR IMAGE, GRAYSCALED

IMAGE, AND PROPOSED COLOR MAPPING SCHEME
FOR MDS AND CVD

components, since green component represents the frequency
and distribution of micro-Doppler. In this literature, we extend
this approach into MDS and CVD by varying color mapping
scheme.

In general image processing, the grayscale function in image
processing preserves the shape of image, not the color informa-
tion, while color represents signal amplitude in micro-Doppler
radar image. To preserve both magnitude and shape of MDS in
a single channel image, we applied customized color mapping
for MDS, and CVD differently, as summarized in Table III.

We propose a custom color mapping for MDI. To preserve
shape of micro-Doppler information in MDS area, we fil-
tered out blue image channel, which means low power and
noisy signals. In addition, we decreased the values of red
component, which means highest magnitude, to represent the
micro-Doppler components as a one pattern. On the other
hand, in CVD image, we filtered out both blue and green color
components, emphasizing red image channel. Because we
utilize CVD image to analyze the frequency of micro-Doppler
pattern, higher frequency is useful feature for classification.

By this color mapping, the proposed PMDI can represent
features of micro-Doppler signal from target better than simple
gray-scaled images.

B. Polarimetric Merged-Doppler Image

As described in the previous letter, MDS plots Doppler
frequency versus time, and CVD shows the frequency of MDS
in Doppler frequency versus frequency of Doppler signal. MDI

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on March 10,2021 at 07:18:02 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE GEOSCIENCE AND REMOTE SENSING LETTERS

TABLE IV

CLASSIFICATION ACCURACY THROUGH FOURFOLD CROSS VALIDATION WITH CNN MODEL,
NOTE THAT THE V AND H IN CLASS NOTATION MEAN TARGET FIXATION DIRECTION

represents both time and frequency domain of Doppler signal,
and presented its feasibility for micro-Doppler analysis.

In this letter, we extend the MDI images into polarimet-
ric MDI images with three different pseudocolor codings.
We compared three different pseudocolor coding schemes to
verify feasibility of polarimetric micro-Doppler-based image
for classification problem. The coding schemes are summa-
rized in Table II.

We compared the classification performance between two
popular and one proposed polarimetric pseudocolor coding
scheme: Pauli-RGB [23], Sinclair [23], and cross correlation.
The first two schemes are popular in polarimetric synthetic
aperture radar (PolSAR) image processing. The conventional
pseudocolor coding presents the difference of reflectivity from
each polarization in the following ways:

⎡
⎣

R
G
B

⎤
⎦

Pauli

=
⎡
⎣

|HH + VV|
|HH − VV|

|HV|

⎤
⎦,

⎡
⎣

R
G
B

⎤
⎦

Sinclair

=
⎡
⎣

|HH|
|HV|
|VV|

⎤
⎦

(4)

where ZHV refers radar reflectivity at SAR image with horizon-
tal polarization transmission and vertical polarization receive.

In traditional pseudocolor coding scheme in polarimet-
ric synthetic aperture image (PolSAR), summation or dif-
ference between polarizations is widely used because each
pixel represents reflectivity of at certain location. However,
in micro-Doppler images, a pixel represents intensity of
Doppler frequency at a certain time, which is not an absolute
value. Considering that micro-Doppler images represent the
pattern of Doppler frequency in very short time, approach
should be different from PolSAR.

Therefore, we present a pseudocolor coding scheme with
2-D cross correlation for polarimetric micro-Doppler analysis.
Because 2-D cross correlation is an effective method in image
processing to represent a similarity between two images,
utilized as a feature extraction process [24].

In this study, we selected the polarizations for cross cor-
relation operation based on the differences between MDI.
By referring results presented in Table I, the VV polarization
presents least difference between target classes. On the other
hand, the difference between MDI from HH and HV polariza-
tion is clear. Therefore, we utilized HH and HV polarization
for cross correlation operation in this study. Note that this
polarization group can vary with target, by different material,
structure, operating frequency of radar. We constructed the

TABLE V

CONFUSION MATRIX OF BARE MICRO-DOPPLER

IMAGE USING GOOGLENET

cross correlation-based polarimetric-MDI as follows:
⎡
⎣

R
G
B

⎤
⎦

xcorr2

=
⎡
⎣

|HH|
|HV|

|xcorr2(HH, HV)|

⎤
⎦. (5)

C. Classification Results and Discussion

In this section, we carried out the comparison with the clas-
sification accuracy results from different micro-Doppler-based
image types and summarized in Table IV. By investigating dif-
ferent input image to CNN, we can verify which preprocessing
and polarimetric data for deep learning are effective for higher
accuracy.

Between single polarized image type results, the clas-
sification results showed similar tendency with previous
experiments [4], which CVD (94.20%) and MDI (96.67%)
result higher accuracy than bare MDS (89.97%), as shown
in Table V. On the other hand, accuracy with proposed PMDIs
is 99.83% (Pauli), 99.53% (Sinclair), and 99.80% (xcorr2).
This high classification accuracy can be verified by analyzing
the confusion matrix as presented in Tables V and VI.

Single polarized image commonly showed low accuracies
at certain classes, hexacopter with six blades at horizontal
fixation (Drone H 6p) and bird-like drone at vertical fixation
(Bird V). This case is when the power of returned signal from
copolarized signal is very weak, on the other hand, that from
cross-polarized signal is a little bit higher, as like reported
in [5]. Based on the features and data from additional polarized
wave, the proposed PMDIs showed higher accuracy than single
polarized ones.
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TABLE VI

CONFUSION MATRIX OF PMDI-XCORR2 USING GOOGLENET

In addition, note that conventional polarimetric pseudocolor
coding schemes, Pauli-RGB and Sinclair, can be obtained by
using full polarimetric radar (HH, HV, VH, VV). On the other
hand, cross correlation pseudocolor coding scheme utilizes
only half of polarimetric information, showing similar clas-
sification accuracy (99.8%). This means that in drone clas-
sification, or classification based on the micro-Doppler-based
approach, it can be improved with polarimetry diversity, and
it may not require full polarimetry transceiver.

In summary, we achieved high classification accuracy
by introducing PMDI. The proposed radar image structure,
PMDI, presents the Doppler information in time and fre-
quency domain from multiple polarized radar signal. The
CNN successfully classified targets with features from PMDI
for different measurement direction and weak returned radar
signals.

IV. CONCLUSION

In this letter, we proposed a novel polarimetric radar image
processing for drone classification. The PMDI is suggested
with polarimetric pseudocolor coding based on modified color
mapping for MDS and CVD. To evaluate classification per-
formance of proposed image structure, we measured returned
radar signal from hexacopter and bird-like drone. The received
full polarimetric radar signal is processed into six different
image types (MDS, CVD, MDI, PMDI-Pauli, PMDI-Sinclair,
and PMDI-xcorr2) for classification problem.

The polarimetric micro-Doppler-based radar image classifi-
cation is performed by utilizing CNN structure, GoogLeNet,
which proved its performance in image classification. The
CNN with basic micro-Doppler image from single polariza-
tion data showed 89.97% accuracy; however, our proposed
polarimetric methods showed above 99.5%. Also, the cross
correlation image structure with half of polarimetric data
showed 99.8% accuracy even the radar data are not fully
polarimetric.

In conclusion, we have demonstrated that polarimetric MDI
can be utilized in the micro-Doppler classification problem for
various aspect angle and type of microdrone. With proposed
approach, the radar image can represent the features from
Doppler in time, frequency, amplitude, and its pattern.

In the future work, we continue on detail analysis on
polarimetric MDSs by comparing classification performance
between different polarization data group, or other image
processing method instead of cross correlation. Also, we will
extend micro-Doppler analysis of moving drones, because the
drone’s blade rotating axis is altered by its moving direction

and the Doppler signal from body and blades are mixed
together.
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